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Abstract

This paper presents a historical perspective on the development of the Galerkin!type and _nite!element calculations
of radiation exchange between surfaces[ It is shown that the formulation of the variational solution of radiation exchange
introduced by Sparrow in the 0849s is similar to that used by Galerkin to solve di}erential equations[ The extension of
Galerkin|s method to the integral equations of the Fredholm type yields the formulations developed by Sparrow using
the variational method[ For this reason\ the Galerkin!type solutions of radiation exchange will be referred to as the
SparrowÐGalerkin method[ The SparrowÐGalerkin solution technique\ in most cases\ provides highly accurate results[
However\ for a certain set of parameters\ the series solutions may not converge[ This leads to formulation of a _nite!
element technique as the discretized form of the SparrowÐGalerkin method evolves into the _nite!element method[ Þ
0887 Elsevier Science Ltd[ All rights reserved[

Nomenclature

ak\j
m\m members of matrix Ak\j

A area ðm1Ł
A matrix of coe.cient
Ak\j square matrices in matrix A

B radiosity ðW m−1Ł
dm coe.cients
d array of coe.cients
fm basis functions
h gap dimension ðmŁ
H irradiation ðW m−1Ł
I variational function
Kij kernel function
L plate dimension ðmŁ
i\ j\ k indices
i\ j\ k unit vectors along x\ y\ z
l\ m\ n indices
mk index
M number of functions

� Corresponding author[ Tel[] 990 706 161 1909^ fax] 990 706
161 1841^ e!mail] hajiÝmae[uta[edu

n unit normal vector
N number of surfaces
r radial coordinate ðmŁ
rij local distance between Ai and Aj

r unit vector along rij

T temperature ðKŁ
x\ y\ z coordinates ðmŁ[

Greek symbols
b angle between radiation incident and n
d vector along element boundary
o emittance
z local coordinate ðmŁ
h variational function\ equation "5#
l parameter in equations "3# and "8#
j local coordinate ðmŁ
r re~ectance
s StefanÐBoltzmann coe.cient ðW m−1 = K−3Ł
f variational function
x unknown function in equations "3# and "8#x vector of x values in _nite element
c known function in equations "3# and "8#
v variational parameter\ see equation "00#[



W[J[ Minkowycz\ A[ Haji!Sheikh:Int[ J[ Heat Mass Transfer 31 "0888# 0242Ð02510243

0[ Introduction

The governing equations for radiation exchange
between surfaces are integral equations of the Fredholm
type[ In the 0849|s\ Sparrow ð0Ł introduced a variational
method to solve radiation exchange problems[ Recently\
it is common to extend the Galerkin method developed
for solving di}erential equations ð1Ł to radiation ex!
change integral equations[ The Galerkin solution in a
discretized form is generally referred to as the _nite!
element method[ The extension of the Galerkin method
to radiation exchange problems yields exactly the same
formulation that Sparrow introduced in the 0849|s using
the Ritz variational method ð0\ 2Ł[ This fact is not clearly
stated in the literature[

Finite element is a powerful numerical technique that
can handle a broad range of heat transfer problems\ It
is widely used in conductive\ convective\ and radiative
applications[ In particular\ _nite element has become a
popular tool when dealing with radiation in a par!
ticipating media[ Recent _nite element work in thermal
radiation\ reported in the literature\ is numerous^ there!
fore\ this work contains only a brief survey of pertinent
literature[ A comprehensive discussion of the _nite!
element method "FEM# and application to conducting
bodies with radiating surfaces is in Huebner et al[ ð3Ł[
An adaptive FEM modeling of radiative heat transfer
coupled with conduction is given by Daurelle et al[ ð4Ł[
Lobo and Emery ð5\ 6Ł analyzed combined conduction
and radiation in nonparticipating media and they show
anomalous FEM solution behaviour when the radiation
component dominates the conduction components[ They
showed that using higher!order basis functions can allevi!
ate this problem[ Kuppurao and Derby ð7Ł studied the
FEM solution of radiant interchange among di}use!gray
surfaces using a higher!order!accurate view factor that
depends on geometry[ Finite element formulation\ in par!
ticular\ the discrete ordinate method\ for application to
absorbing\ emitting\ and scattering media is reported by
Sanchez and Smith ð8Ł\ Fiveland ð09Ł\ Fiveland and Jessee
ð00Ł\ and others ð01\ 02Ł[

The variational formulations of Sparrow ð0\ 2Ł are
exactly the same as the _nite element formulations based
on the weighted residuals[ Accordingly\ it is appropriate
to review the work done by Sparrow ð0\ 2Ł as a prelude
to the formulation of the _nite!element method[

0[0[ Sparrow variational equation

At the outset\ formulation of the radiation exchange
problems will be limited to a simple case discussed by
Sparrow ð0Ł[ The con_guration consists of two parallel
plates a distance h apart\ Fig[ 0[ The plates have a dimen!
sion L in the x!direction and are in_nitely long per!
pendicular to the plane perpendicular to the x!axis[ The

Fig[ 0[ Schematic of two parallel plates[

plates are at the same temperature and have equal emiss!
ivities[ The radiosity is de_ned by equation

B"x# � osT3¦rH"x# "0#

where H"x# is known as the irradiation to the surface[ The
radiosity for di}usely emitting and di}usely re~ecting
surfaces is governed by equation "0#

B"x# � osT3¦
rh1

1 g
L:1

−L:1

B"y# dy

ð"y−x#1¦h1Ł2:1
"1#

where y is a dummy variable of integration[ The value
H"x# in equation "0# is replaced by

H"x# �
h1

1 g
L:1

−L:1

B"y# dy

ð"y−x#1¦h1Ł2:1
"2#

to yield equation "1#[ Equation "1# has a form commonly
referred to as the Fredholm integral equation[ For the
sake of brevity\ it is written as

x"x# � c"x#¦l g
b

a

x"y#K"x\ y# dy[ "3#

Sparrow ð0Ł introduced the following variational
expression for the functional I to be minimized\

I � g
b

a

ðx"x#Ł1 dx−1 g
b

a

x"x#c"x# dx

−l g
b

a g
b

a

x"x#x"y#K"x\ y# dy dx[ "4#

For convenience of this presentation\ the functional I in
equation "4# is the negative of that in ref[ ð0Ł[ This minor
modi_cation causes the extremum of equation "4# to
become a minimum[ Equation "4#\ using minimization
principles\ yields equation "3#[ For the purpose of proof\
the function that will minimize I is designated as x¹ \ so
that

x"x# � x¹ "x#¦vh"x# "5a#

x"y# � x¹ "y#¦vh"y# "5b#

where v is the variational parameter and h is an arbi!
trarily selected function[ After substituting x"x# and x"y#
in equation "4#\ the functional I can be minimized[ This
is accomplished by setting 1I:1v � 9[ Of course\ the func!
tion x¹ "x#\ calculated to minimize I\ approaches the solu!



W[J[ Minkowycz\ A[ Haji!Sheikh:Int[ J[ Heat Mass Transfer 31 "0888# 0242Ð0251 0244

tion function x"x# when v : 9[ Following the min!
imization principle ð0Ł\ equation "4# becomes

0
1I
1v1v�9

� 1g
b

a

h"x# $x"x#−c"x#

−g
b

a

x"y#K"x\ y# dy% dx � 9[ "6#

This relation is valid for all values of h"x#^ therefore\ the
term in the square brackets is equal to zero[ Equation
"6# also describes a technique commonly known as the
method of weighted residuals[ Accordingly\ the min!
imization of I led to equation "3#[ For I to be a minimum\
the second derivative of I with respect to v must be
unconditionally positive[ This will be demonstrated later[

Sparrow ð0Ł replaced x by a linear combination of a
complete set of independent functions\

x"x# � s
M

m�0

dmfm"x#[ "7#

In the Sparrow formulation\ fm"x# � x1"m−0# represents
the basis functions and h"x# in equation "6# becomes
the basis function fm"x# for m � 0\ 1\ 2\M[ Speci_cally\
Sparrow ð0Ł considered x"x# � d0¦d1x

1¦d2x
3 and sub!

stituted for x"x# and x"y# in equation "6#[ This makes I
a function of d0\ d1\ and d2[ Setting 1I:1d0 � 9\ 1I:1d1 � 9\
and 1I:1d2 � 9\ leads to three linear equations[ The basic
steps are described in ref[ ð0Ł[

In a numerical example\ Sparrow ð0Ł demonstrated
that high accuracy is achievable using the methodology
described above[ For the con_guration in Fig[ 0\ the
worst accuracy is reported ð0Ł when both h:L and the
emissivity are small[ For instance\ in the dimensionless
form\ for h:L � 9[0 and o � 9[0\ Sparrow calculated
x"x# � B"x#:osT3 as

x"x# � 6[194−09[95x1−16[70x3^ for −9[4 ¾ x ¾ 9[4[

It is shown that at x � 29[4\ the error is less than 1)[
Generally\ an accurate solution is possible when poly!
nomials are of degrees 5Ð7[

The procedure developed by Sparrow ð0Ł is exactly the
same as the extension of the weighted residuals method
ð1Ł to the Fredholm integral equation[ In the method of
weighted residuals\ both sides of the energy transport
equation\ equation "3#\ are multiplied by a basis function\
fm"x#\ then integrated over the domain of x"x#[ Both
procedures produce exactly the same relation\ speci_!
cally\ equation "6#[ Galerkin introduced the method of
weighted residuals to solve di}erential equations ð1Ł while
Sparrow developed this methodology to evaluate radi!
ation interchange among surfaces^ hence\ the meth!
odology is called SparrowÐGalerkin[ The use of equation
"6# instead of equation "4# simpli_es the procedure with!
out changing the formulations or results[ In other words\
the SparrowÐGalerkin procedure is a shortcut that
bypasses the mathematical steps of variational calculus[

Following this introduction\ the generalized formulation
of the SparrowÐGalerkin method and its transition to the
_nite!element method is presented[

1[ Generalized variational formulation

The method described above is for a simple problem[
The radiation exchange usually takes place between many
surfaces with di}erent temperatures and surface proper!
ties[ Sparrow and Haji!Sheikh ð2Ł presented a generalized
variational principle for multisurface applications[ A
brief mathematical formulation is described below^ the
complete derivations are available in ref[ ð2Ł[ The radi!
ation exchange between surfaces is given by the relation

xi"ri# � ci"ri#¦li s
N

j�0 gAj

xj"rj#Kij"ri\ rj# dAj^

for i � 0\ 1\ [ [ [ \ N "8#

where ri and rj are the position vectors for surfaces i and
j[ The function Kij"ri\ rj# is related to the angle factor of
con_guration factor\ dFij � Kij"ri\ rj# dAj[ The reciprocity
relation shows that Kij � Kji[ The generalized variational
relation is

I� s
N

i�0

0
li gAi

ðxi"ri#Ł1 dAi−1 s
N

i�0

0
li gAi

xi"ri#ci"ri# dAi

−s
N

i�0gAi
gAi

xi"ri#xi"r?i#Kii"ri\ r?i# dAi dA?i

−1 s
N

j�1 $s
j−0

i�0 gAi
gAj

xi"ri#xj"rj#Kij"ri\ rj# dAj dAi%[
"09#

It is possible to present the third and the fourth terms on
the right!hand!side of equation "09# as one term using
the symmetric property of Kij[ However\ the third term is
extracted to show the e}ect of the total irradiation from
the surface i towards itself[ Following the standard vari!
ational steps\ the minimization of equation "09# leads to
equation "8#[ This can be demonstrated by setting

xk"rk# � x¹ k"rk#¦vkhk"rk# "00#

for a surface k^ k � 0\ 1\ [ [ [ \N[ Notice that vk is a mem!
ber of a set identi_ed by\ V � "v0\ v1\ [ [ [ \vN# and V � 9
implies that each member of the set is equal to zero[ The
extremum of this function is obtained when
"1I:1vk#V�9 � 9 for k � 0\ 1\ [ [ [ \N[ This leads to a
relation ð2Ł\

gAk

hk"rk# $
0
lk

xk"rk#−
0
lk

ck"rk#

− s
N

j�0 gAj

xj"rj#Kkj"rk\ rj# dAj% dAk � 9[ "01#

Recall that each x¹ function becomes x when V � 9[ Since
equation "01# holds for all values of hk"rk#\ then the quan!
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tity in the square brackets must have a zero value^ there!
fore\ the minimization of equation "09# yields equation
"8#[ Of course\ for this extremum to be a minimum\ the
second derivative of I with respect to vk must be positive[
The second derivative is

11I

1v1
k

� 1 6
0
lk gAk

ðhk"rk#Ł1 dAk

−gAk
gAk

hk"rk#hk"r?k#Kkk"rk\ r?k# dA?k dAk7 "02#

where prime indicates the dummy variable of integration
for the inner integrals[ Using the symmetric nature of Kij\
the second term in the braces\ equation "02#\ is equal to\

gAk
gAk

hk"rk#hk"r?k#Kkk"rk\ r?k# dA?k dAk

� gAk
gAk

ðhk"r?k#Ł1Kkk"rk\ r?k# dA?k dAk

−
0
1 gAk

gAk

ðhk"rk#−hk"r?k#Ł1Kkk"rk\ r?k# dA?k dAk[ "03#

Combining equations "02# and "03# results in the relation

11I

1v1
k

� 1 6
0
lk gAk

ðhk"rk#Ł1 dAk

−gAk
gAk

ðhk"r?k#Ł1Kkk"rk\ r?k# dA?k dAk7
¦gAk

gAk

ðhk"rk#−hk"r?k#Ł1Kkk"rk\ r?k# dA?k dAk × 9[ "04#

Since both terms on the right side of equation "04# are
positive\ the inequality holds[ The function hk is real and
h1

k in equation "02# is always positive[ The function h1
k

can be regarded as an abstract radiosity of surface k[
Because the integral

gAk
gAk

ðhk"r?k#Ł1Kkk"rk\ r?k# dA?k dAk

inside the brace\ equation "04#\ represents a fraction of
the abstract energy that the surface k irradiates on itself
and the entire energy leaving surface k is

gAk

ðhk"rk#Ł1 dAk

therefore\ the net value of the term in the curly brackets\
equation "04#\ is positive\ implying 11I:1v1

k × 9[ Notice
that when I � −I\ equation "01# remains unchanged but
in this case\ 11I:1v1

k ³ 9^ hence\ only the extremum of
function I is a su.cient condition to satisfy equations for
energy interchange among surfaces[

2[ SparrowÐGalerkin method

This method provides closed!form solutions to radi!
ation exchange between surfaces[ In ref[ ð2Ł\ it is proposed
to replace xk"rk# in equation "09# by

xk"rk# � s
M

m�0

dk\mfk\m"rk# "05#

for i � 0\ 1\ [ [ [ \N[ After substitution\ one must di}er!
entiate I with respect to dk\m to obtain a set of sim!
ultaneous equations[ As an alternative procedure\ one
can substitute xk"rk# in equation "01# and obtain the same
set of equations\

gAk

fk\n"rk# $
0
lk

s
M

m�0

dk\mfk\m"rk#−
0
lk

ck"rk#

− s
N

j�0 gAj

s
M

m�0

dj\mfj\m"rj#Kkj"rk\ rj# dAj% dAk � 9 "06#

for k � 0\ 1\ [ [ [ \N[ Here\ N is the total number of sur!
faces^ however\ M can vary from surface to surface[
Equation "06# represents a set of M×N simultaneous
algebraic equations[ The solution of this set of equations\

A = d� c "07#

yields the coe.cient in the set of d � "d0\ d1\ [ [ [ \ dN#\
wherein every member of the kth subset has the elements
dk � "dk\0\ dk\1\ [ [ [ \ dk\M#[ The elements of the matrix A in
equation "07# are

ak\j
m\n �

dkj

lkgAk

fk\n"rk# fj\m"rk# dAk

−gAk
gAj

fk\n"rk# fj\m"rk#Kkj"rk\ rj# dAj dAk "08#

where dkj � 0 when k � j and dkj � 9 when k � j[ For
each pair of "k\ j# ak\j

m\n describes a square matrix Ak\j whose
locations in the square matrix A are shown below\

A �

K

H

H

H

H

k

A0\0 A0\1 [ [ [ A0\N

A1\0 A1\1 [ [ [ A1\N

[ [ [ [ [ [ [ [ [ [ [ [

AN\0 AN\1 [ [ [ AN\N

L

H

H

H

H

l

[ "19a#

Each member of matrix A is an M×M matrix\

Ak\j �

K

H

H

H

H

k

ak\j
0\0 ak\j

0\1 [ [ [ ak\j
0\M

ak\j
1\0 ak\j

1\1 [ [ [ ak\j
1\M

[ [ [ [ [ [ [ [ [ [ [ [

ak\j
M\0 ak\j

M\1 [ [ [ ak\j
M\M

L

H

H

H

H

l

"19b#

and satis_es the relation Aj\k � Ak\j\ indicating the matrix
A is symmetric[ The array represented by
c � "c0\ c1\ [ [ [ \cN# is a column vector that consists of
subarrays\ ck[ Each subarray ck has the elements\
ck � "ck\0\ ck\1\ [ [ [ \ck\M#\ where

ck\m � gAk

0
lk

fk\m"rk#ck"rk# dAk[ "10#

Details concerning the computation of the radiosity using
equations "05#Ð"19# are included in the following numeri!
cal example[
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Example 0] This example concerns radiation exchange
between two parallel circular disks\ N � 1\ whose numeri!
cal solution is available in the literature ð03Ł[ The centers
of two circles are located on the same line and the line is
perpendicular to both disks\ see the inset in Fig[ 1[ Equa!
tion "01# for radiation exchange between these two disks
with radii R0 and R1 is written as

g
R0

9

h0"r0# $
0

0−o0

B0"r0#−
0

0−o0

o0sT3
0

−g
R1

9

B1"r1#K01"r0\ r1#1p dr1% 1p dr0 � 9 "11a#

g
R0

9

h1"r1# $
0

0−o1

B1"r1#−
0

0−o1

o1sT3
1

−g
R0

9

B0"r0#K10"r1\ r0#1p dr0% 1p dr1 � 9[ "11b#

In the standard SparrowÐGalerkin method\ the radios!
ities\ B0 and B1\ are approximated using equation "05#
where f0\m"r0# �"r0#1"m−0# and f1\m"r1# �"r1#1"m−0#[ Sub!
stitution of B0 and B1 in equations "11a# and "11b#\ and
the assumption that h0 � f0\0\ f0\1\ [ [ [ \ f0\M and
h1 � f1\0\ f1\1\ [ [ [ \ f1\M\ lead to 1M simultaneous equations
described by equation "07#[

The elements of matrix A and c were calculated using
MATHEMATICA ð04Ł and FORTRAN[ Following
matrix inversion\ the values of B0:sT3

0 "or B1:sT3
0# for a

test case\ when T0 � T1\ R0 � R1 � 0\ h � 9[4\
o0 � o1 � 9[4\ are presented in Table 0[ Table 1 contains
the computed values of B0:sT3

0 "or B1:sT3
0# at various

surface locations for h:R0 � 9[0\ 9[4\ and 0[9 and for
di}erent values of emittance[ For this example\ con!
vergence is achieved to _ve signi_cant _gures when
M � 6[ The error in the data is small for all M!values
listed in Table 0^ within 9[6) when N � 1[ The cal!

Fig[ 1[ Radiosity for two parallel disks when T0 � T1\ o0 � o1\
R1 � R0\ and h:R0 � 9[0[

culation of the elements of matrix A requires numerical
integration[ The symbolic program MATHEMATICA
produced d0 � d1 � "9[795094\ −9[013408\ −9[9859820\
9[9370640#[ For the same task\ a FORTRAN program
used only a few seconds of computer time and produced
the coe.cients d0 � d1 � "9[795092\ −9[013382\
−9[9850454\ 9[9371052#^ about an order of magnitude
faster[ All computations were performed on a personal
computer[

The SparrowÐGalerkin method\ in general\ converges
rapidly to the exact values of B0:sT3

0 and B1:sT3
0\ except

when B0:sT3
0 or B1:sT3

0 is nearly ~at over a section of
the surface and its value changes rapidly over another
section[ Two graphs are presented to show the behavior
of the SparrowÐGalerkin solution[ Figure 1 shows the
variation of B0:sT3

0 "or B1:sT3
0# vs[ r0:R0 "or r1:R0# when

R0 � R1\ h:R0 � 9[0\ and T0 � T1[ Despite the small
dimension of the gap\ the data are well behaved for
o0 � o1 � 9[0 and 9[4[ For the next case\ the radius of the
second disk is reduced to R1 � R0:1 while other variables
remain the same as those in Fig[ 1^ that is T0 � T1\
h:R0 � 9[0\ and o0 � o1 � 9[0 and 9[4[ The values of
B0:sT3

0 and B1:sT3
0 are plotted in Fig[ 2[ The value of

B1:sT3
0 is converging after a few terms while B0:sT3

0

oscillates about the solution[ The reason for these oscil!
lations is that polynomials\ even of degree 03 "N � 7#\
cannot adequately describe the changes in radiosity[
There are two methods that overcome this di.culty[ One
method is to select a set of functions that have charac!
teristics expected from the solution and is not discussed
to avoid redundancy[ The second\ and simpler method\
is to subdivide the surface into smaller surfaces and treat
each as a di}erent surface[ The second scheme has a
broader implication as it becomes the _nite!element
method[ The _nite!element technique is subject to certain
approximations^ each approximation is discussed in the
next section[

3[ SparrowÐGalerkin _nite element

Sparrow|s variational formulations are basic to the
derivation of the _nite!element procedure for computing
the radiation interchange among surfaces[ Formulation
of the _nite!element method of solution begins with equa!
tion "01#[ Each surface k is subdivided into Mk small
surfaces and each is treated as a separate surface for
inclusion in equation "01#[ The next step is to de_ne x
and h functions for all elements[ Similar to the standard
_nite!element procedure\ the x functions are described
by linear functions of local coordinates for each of the
elements\ e[g[\

xk"jm\ zm# �"0−jm−zm#xk\m¦jmxk\l¦zmxk\p "12#

where xk\m\ xk\l\ and xk\p are corner nodes for element m
having coordinates "9\ 9#\ "0\ 9#\ and "9\ 0#\ respectively\
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Table 0
Radiosity B0:osT3

0 "or B1:osT3
0# when T0 � T1\ R0 � R1 � 0\ h � 9[4\ and o0 � o1 � 9[4

r0 or r1 M � 1 M � 2 M � 3 M � 4 M � 5 M � 6 M � 7

9[9 9[70150 9[79744 9[79509 9[79548 9[79554 9[79551 9[79551
9[0 9[70972 9[79690 9[79374 9[79413 9[79418 9[79416 9[79416
9[1 9[79440 9[79126 9[79986 9[79003 9[79003 9[79004 9[79004
9[2 9[68552 9[68342 9[68304 9[68396 9[68394 9[68395 9[68395
9[3 9[67319 9[67225 9[67281 9[67260 9[67258 9[67269 9[67269
9[4 9[65712 9[65755 9[65861 9[65847 9[65848 9[65847 9[65847
9[5 9[63769 9[64907 9[64096 9[64001 9[64003 9[64003 9[64003
9[6 9[61452 9[61659 9[61658 9[61676 9[61676 9[61677 9[61677
9[7 9[58899 9[69944 9[58857 9[58862 9[58860 9[58860 9[58860
9[8 9[55771 9[55759 9[55679 9[55659 9[55650 9[55650 9[55650
0[9 9[52409 9[52018 9[52256 9[52304 9[52398 9[52395 9[52395

Table 1
The value of B0:sT3

0 "or B1:sT3
0# for di}erent values of h and o1 � o0 when M � 7

h:R0 r0:R0 o0 � 9[0 o0 � 9[2 o0 � 9[4 o0 � 9[6 o0 � 9[8

9[0 9[9 9[71750 9[85553 9[87646 9[88380 9[88757
9[1 9[70820 9[85342 9[87631 9[88408 9[88774
9[3 9[67480 9[84151 9[87158 9[88215 9[88724
9[5 9[60656 9[81243 9[86982 9[87776 9[88626
9[7 9[47977 9[72786 9[81637 9[85854 9[88140
0[9 9[16362 9[41108 9[58958 9[71630 9[83461

9[4 9[9 9[17434 9[51394 9[79551 9[80173 9[86638
9[1 9[17015 9[50643 9[79004 9[89837 9[86530
9[3 9[15725 9[48604 9[67269 9[78741 9[86179
9[5 9[13481 9[45932 9[64003 9[76622 9[85445
9[7 9[10228 9[49374 9[58860 9[73130 9[84201
0[9 9[06372 9[32530 9[52395 9[68518 9[82505

0[9 9[9 9[06954 9[33536 9[54567 9[70847 9[83580
9[1 9[05802 9[33225 9[54240 9[70602 9[83486
9[3 9[05351 9[32304 9[53279 9[78971 9[83203
9[5 9[04630 9[30824 9[51702 9[68688 9[82744
9[7 9[03706 9[39920 9[59674 9[67150 9[82144
0[9 9[02796 9[26826 9[47436 9[65445 9[81475

in the local coordinate system "jm\ zm#[ Accordingly\ all
integrations in equation "06# will have exact values\
except those having the function Kkj in the integrand[ A
_nite!element procedure requires a reasonably accurate
evaluation of the integrals that include Kkj functions[
Numerical integrations can be elaborate when the num!
ber of elements is large[ Three approximations are selec!
ted for the calculation of Kkj between element m on sur!
face k and element n on surface j[

"0# Integrals that include Kkj functions are numerically
integrated[

"1# Assume Kkj"rk\m\ rj\n# as a constant evaluated using

rk\m and rk\n at the centeroids of the mth element on
surface k\ and the nth element on surface j[

"2# Calculate Kkj"rk\m\ rj\n# using the coordinates of each
of the nodal points of element m on surface k and
nodal points of element n on surface j\ then average
the calculated Kkj"rk\m\ rj\n# values[

The _nite!element steps\ and a discussion concerning
the accuracy of the three approximations mentioned
above are presented through a simple numerical exam!
ples[
Example 1] Equation "1# describes the radiation inter!
change between two parallel disks described in Example



W[J[ Minkowycz\ A[ Haji!Sheikh:Int[ J[ Heat Mass Transfer 31 "0888# 0242Ð0251 0248

Fig[ 2[ Radiosity for two parallel disks when T0 � T1\ o0 � o1\
R1 � R0:1\ and h:R0 � 9[0[

0[ Each of the parallel disks\ 0 and 1\ are subdivided into
M0 and M1 elements\ respectively\ Fig[ 3[ The size of
surface elements on Disks 0 and 1 are Dr0 � R0:M0 and
Dr1 � R1:M1[ The unknown function xk for k � 0 or 1\
over the element m is

xk �"0−jk\m#xk\m¦jk\mxk\m¦0\ for rk\m ³ rk ³ rk\m¦0

"13#

when jk\m �"rk−rk\m#:"rk\m¦0−rk\m# is the local coor!
dinate that replaces rk\ and for elements m on surface k\
see Fig[ 3\ where rk\m¦0−rk\m � Drk\m[ In this example\
Drk\m � Drk is a constant[

Substituting for x0 and x1\ given by equation "13#\ into
equation "09# yields a function I"x0\m\ x1\m#\ for
m0 � 0\ 1\ [ [ [ \M0 and m1 � 0\ 1\ [ [ [ \M1[ Now\ the poly!
nomial coe.cients dk\m in the SparrowÐGalerkin method
are replaced by xk\m[ Based on the formulation presented
earlier\ one must set 1I:1xk\m � 9 for node mk\ Fig[ 3\
on surface k[ This yields a simple relation that has the
contribution of integrals over the elements adjacent to
this node[ The resulting equations in the matrix form are\

A = x � c[ "14#

Matrix A has a form similar to the matrix A in equation

Fig[ 3[ Finite elements over two parallel disks[

"19a#^ however\ the entries in equation "19a# are to be
modi_ed[ To describe the formulation\ let us consider
each element as an independent surface[ Equation "13#
describes the variation of x functions for each element
where "0−jk\m# and jk\m are the basis functions while xk\m

and xk\m¦0 are the coe.cients to be determined[ Using
the standard SparrowÐGalerkin method\ there are two
equations for each element[ Solving this system should
yield di}erent values for xk\m] one for element m−0 and
the other for m[ However\ the number of equations in
the _nite!element method is less because the value of
xk\m for elements m and m−0 must be identical[ The
formulation of the _nite!element method requires con!
sidering equation "01# and treating each element as a
separate surface with xk given by equation "13#[ For
example\ since xk\m is a constant to be determined\ di}er!
entiating I with respect to xk\m yields the function hk in
equation "01#[ For adjacent elements\ the contributions
to hk are from the basis functions 0−jk\m of the node m
and from the basis function jk\m−0 of the node m−0\ see
equation "13#[ These two contributions are added since\
in equation "01#\ xk\m has equal values for neighboring
elements[ For this speci_c example\ matrix A consists of
four square matrices\ see equation "19a#[ The matrices
A0\0 and A1\1 are tridiagonal since K00 � K11 � 9[ Using
the above procedure\ each row\ m\ has contributions from
element m−0 and element m so that

ak\k
m\m−0 � ðDr1

k :01¦Drkrk\m−0:5Ł:lk "15a#

ak\k
m\m � ð"Dr1

k :3¦Drkrk\m−0:2#¦"Dr1
k :01¦Drkrk\m:2#Ł:lk

"15b#

and

ak\k
m\m¦0 � ðDr1

k :01¦Drkrk\m:5Ł:lk[ "15c#

The contribution of element m−0 to the diagonal term\
ak\k

m\m\ is the term in the _rst parenthesis\ equation "15b#\
while the term in the second parenthesis is the con!
tribution of element m[ Therefore\ the _rst row of Ak\k

only has the contribution of the _rst element and the last
row "row Mk¦0# has only the contribution from element
Mk[ The matrices A0\1 and A1\0 are full because
K01 � K10 � 9[ For each node\ m\ there are contributions
from the neighboring elements\ m−0 and m[ According
to equation "13#\ the value of the basis function for
inclusion in equation "06# is jk\m for element m−0\ and
0−jk\m for element m[ As before\ for node 0\ the con!
tribution is from element 0\ hk\0 � 0−jk\0\ and for node
Mk¦0\ the contribution is from element m\ hk\mk

� jk\mk
[

The function xj in equation "06# must be integrated over
all elements participating in thermal radiation^ therefore\
for this example\ the matrices A0\1 and A1\0 are full and
each entry has contributions from adjacent elements[ The
sum of the permuted contributions from adjacent
elements yields the entry of matrices A0\1 and A1\0[ For
instance\ ak\j

m\n has contributions from elements m−0 and
m on the surface k\ plus n−0 and n on surface j\
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ak\j
m\n �−g

rk\m

rk\m−0

jk\m−0 $g
rj\n

rj\n−0

"0−jj\n−0#Kk\j1prj drj

¦g
rj\n¦0

rj\n

jj\n−0Kk\j1prj drj% rk drk−g
rk\m

rk\m−0

"0−jk\m−0#

×$g
rj\n

rj\n−0

"0−jj\n−0#Kk\j1prj drj

¦g
rj\n¦0

rj\n

jj\n−0Kk\j1prj drj% rk drk[

"16#

The nodes m � 0 and m � Mk¦0 on surface k and nodes
n � 0 and n � Mj¦0 on surface j should receive special
attention since each node is adjacent to only one element[
Similarly\ the members of the array c have contribution
from elements adjacent to that member

ck\m � g
rk\m

rk\m−0

jk\m−0

0
lk

ck\m−0rk drk

¦g
rk\m¦0

rk\m

"0−jk\m#
0
lk

ck\mrk drk "17#

where the _rst term on the right!hand!side is the
contribution of elements m−0^ it is equal to
"Dr1

k :2¦rk\m−0Drk:1#ck:lk[ Similarly\ the contribution
of the contribution of the element m is
"Dr1

k :5¦rk\mDrk:1#ck:lk[ The sum of both terms in
equation "17# is rk\mDrkck:lk[ For node 0\ the contribution
of element 0 is Dr1

kck:5lk while for m � Mk¦0\ only the
contribution of the node m−0 �Mk is used[

As a test case\ the data in Table 0 are reproduced by
the _nite!element method[ The data for the _rst approxi!
mation\ where the kernel function\ Kij is position depen!
dent\ are produced by numerical integration of integrals
in equation "16#[ For M0 � M1 � 09 and 19\ the data in
Table 2 show a remarkably high degree of accuracy[ The
second approximation produces larger errors observed
mainly at end points[ This approximation is easier to
implement numerically[ A variation of this\ not presented
here\ is to calculate the Kkj function using the arithmetic
mean of coordinates of the nodal points surrounding
each element[ This resulted in slightly larger errors than
the second approximation data[ Approximation 2 is eas!
iest to implement^ however\ it provided slightly larger
errors[

A remarkable feature of the _nite!element method is
demonstrated by repeating the calculations presented in
Fig[ 2 for two disks of di}erent radii[ The _nite!element
method e}ectively deals with variation of radiosities over
both surfaces[ Figure 4a is for R1 � R0:1 and
o � o0 � o1 � 9[0\ and two di}erent h:R0 values[ Unlike
the data in Fig[ 2\ there are no visible oscillations and
the data for the _nite!element method\ using the _rst
approximation\ are quite smooth[ For the second

approximation\ there is a small error in the value of
radiosity at r0 � 9 only when h:R0 � 9[0[ Figure 4b is for
the same variables as Fig[ 4a\ except the emittance for
both surfaces is 9[4[ The higher emittance in Fig[ 4b did
not alter the behavior of the two solutions[ This shows
that for larger values of h:L\ the approximations listed
earlier are satisfactory[ When the emittance su}ers
adverse localized changes\ a _nite element that numeri!
cally integrates over elements yields more accurate
results[ In fact\ the data shown in Figs 4a and b were
veri_ed using a re_ned numerical evaluation and they
showed excellent accuracy[ The largest error observed in
Fig[ 4a is at r � 9 for both disks^ 9[90) for the _rst
approximation and 0[3) for the second approximation[

4[ Comments

It is appropriate to describe a method for calculating
Kij for any pair of elements on i and j surfaces[ A sche!
matic of this pair of elements is given in Fig[ 5[ With any
standard grid generation technique\ all elements and their
corresponding nodal coordinates are known[ Because the
_nite!element technique is well established\ the discussion
presents the basic changes without exhaustive details[
Much of the procedure is identical to the _nite element
formulations for solving various di}erential equations[

Equation "01# serves as the basic relation for the _nite!
element formulations[ The _nite element is instrumental
in _nding approximate radiosity distributions that min!
imize function I[ According to the data in Figs 4a and b\
numerical quadrature " _rst approximation# may become
necessary when the spacing between participating sur!
faces is small[ Otherwise\ any approximate method of
determining Kij should provide data with su.cient accu!
racy[ Once the elements on each surface are speci_ed\ one
can de_ne relations between local and global coordinates^
local coordinates for the radiosity\ equation "12# and
the global coordinate for Kij[ After completion of the
solution\ one can express the radiosity in terms of global
coordinates[

The generalized procedure to evaluate the kernel func!
tion Kij for a pair of nodes on the surfaces Ai and Aj is as
follows[ The function

Kij �
cos bi cos bj

r1
ij

depends on local quantities that can be de_ned as follows[
The variable rij is a distance between a point "xi\ yi\ zi# on
surface Ai and a point "xj\ yj\ zj# on surface Aj[ It is the
magnitude of the vector

rij �"xj−xi#i¦"yj−yi#j¦"zj−zi#k

where i\ j\ k are unit vectors along x\ y\ and z coordinates[
The unit vector along rij\ point toward surface Aj\ is
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Table 2
Raidosity B0:osT3

0 "or B1:osT3
0# when T0 � T1\ R0 � R1 � 0\ h � 9[4\ o0 � o1 � 9[4\ and M0 � M1 � M

r0

Finite element Finite element Finite element Finite element

or
approx[ 0 approx[ 0 approx[ 1 approx[ 2 Table 0

r1 M � 09 Error ) M � 19 Error ) M � 19 Error ) M � 19 Error ) M � 7

9[9 9[79584 9[933 9[79569 9[909 9[79522 9[924 9[79674 9[041 9[79551
9[0 9[79437 9[915 9[79421 9[995 9[79389 9[935 9[79514 9[011 9[79416
9[1 9[79028 9[929 9[79010 9[996 9[79974 9[926 9[79075 9[978 9[79004
9[2 9[68323 9[824 9[68302 9[998 9[68274 9[915 9[68336 9[941 9[68395
9[3 9[67390 9[939 9[67266 9[998 9[67245 9[907 9[67271 9[904 9[67269
9[4 9[65883 9[936 9[65856 9[901 9[65841 9[997 9[65838 9[901 9[65847
9[5 9[64044 9[944 9[64013 9[902 9[64003 9[999 9[64989 9[921 9[64003
9[6 9[61729 9[947 9[61687 9[903 9[61682 9[996 9[61644 9[934 9[61677
9[7 9[69995 9[949 9[58879 9[902 9[58879 9[902 9[58839 9[933 9[58860
9[8 9[55660 9[904 9[55653 9[993 9[55791 9[950 9[55661 9[905 9[55650
0[9 9[52285 9[905 9[52392 9[905 9[52781 9[655 9[52770 9[638 9[52395

Fig[ 4[ "a# Radiosity for two parallel disks when R1 � R0:1\
T0 � T1\ o � o0 � o1 � 9[0\ and h:R0 � 9[0 and 9[4 by _nite
element method "approximation 0#[ "b# Radiosity for two par!
allel disks when R1 � R0:1\ T0 � T1\ o � o0 � o1 � 9[4\ and
h:R0 � 9[0 and 9[4 by _nite element method "approximation 0#[

Fig[ 5[ Schematic of two elements i and j for calculation of kij[

rij

=rij =
[

For example\ using node 0 on the surface Ai and node 1
on surface Aj in Fig[ 5\ this unit vector becomes

ri0j1

=ri0j1 =
[

If ni0 is the unit vector normal to surface Ai at the nodal
point 0\ then cos bi is

cos bi � ni0 = 0
ri0j1

=ri0j1 =1
where

ni0 �
di01×di02

=di01×di02 =
di01 � "xi1−xi0#i¦"yi1−yi0#j¦"zi1−zi0#k

and

di01 �"xi2−xi0#i¦"yi2−yi0#j¦"zi2−zi0#k[
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A similar procedure applies for determination of cos bj[
For the example used earlier\ cos bi and cos bj are equal^
however\ in general\ they are not the same for any pair
of nodal points on surfaces Ai and Aj[ The deviations
given above for the calculation of angle factors equally
apply to surface elements of di}erent shapes[

5[ Conclusions

It was shown that equation "06# will formally replace
equation "4# derived by Sparrow ð0Ł and equation "09# by
Sparrow and Haji!Sheikh ð2Ł[ Alternatively\ the Galerkin
method developed to solve di}erential equations\ if
applied to equation "8#\ yields equation "06#[ For this
reason\ it is appropriate to reiterate that the solution of
a set of integral equations described by equation "8# is
designated as the SparrowÐGalerkin method[ Here\ it
is shown that both methods lead to an identical set of
equations and the SparrowÐGalerkin method satis_es the
Ritz variational principles and paves the way toward a
better understanding of the _nite!element method[ Divid!
ing each surface into smaller surfaces\ the SparrowÐ
Galerkin method leads to the standard _nite element
formulation[ The higher!order _nite element\ the p!
method\ is also a direct and automatic extension of the
SparrowÐGalerkin method[

The work reported by Sparrow ð0Ł represents the pion!
eering step for development of powerful solution tech!
niques to compute radiation exchange between surfaces[
The SparrowÐGalerkin method and SparrowÐGalerkin!
based\ _nite!element method are based on variational
principles developed by Sparrow ð0\ 2Ł[ Both methods are
powerful and useful solution techniques that are cur!
rently in use[ The presentation in this paper is for linear
systems[ When thermal radiation takes place in con!
junction with conduction or convection\ the governing
integral equations are nonlinear[ One can modify the
_nite element formulation for solving these nonlinear
systems[ For solving nonlinear integral or inte!
grodi}erential equations\ one must develop a lin!
earization scheme but this is beyond the scope of this
presentation[
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